KMS Technical Documentation

KMS Technologies focuses on electromagnetic (EM) systems such as Magnetotelluric instruments, Controlled Source EM (CSEM) (in time and frequency domain) systems and NMR laboratory instruments. NEW hardware are land electromagnetic transmitters (grounded dipoles and loop) KMS-5100 and the shallow borehole system KMS-888.

The following page contains brochures for KMS Technologies' products and services that provide technical specifications. Please click on the links below in order to download a brochure in PDF format. The Products and Services tabs allows you to see the products in a better overall context.

Under EM hardware we design and manufacture a land, marine, borehole ARRAY system based on unified architecture.   

Our services include land, marine, and borehole system design and field acquisition support, as well as Cloud based inversion services.

>>> Publications with KMS hardware

Company overview and general information

  1. Company overview.pdf
  2. KMS brochure - company & product overview
  3. General terms and conditions
  4. KMS-KJT rental policy
  1. Reference material KMS case histories (geothermal focus)

KMS News:

  1. KMS-831 32-bit sub-acquisition controller
  2. KMS 200 updates, update 2.0
  3. Reservoir Monitoring
  4. 2017 NEW PRODUCTS TRUE BROADBAND COIL and web access box

Hardware: Acquisition units, transmitters, most common sensors

Acquisition units:

  1. MT system family
  2. Electromagnetic/micro-seismic data acquisition unit: KMS-820  Wifi-interface optionsweb access box
    KMS-820 marketing postcard:KMS-820 marketing postcard.pdf
  3. NEW.. KMS 831- digital interface for 32 bit remote acquisition  NEWS item
  4. KMS-820 MINI- low cost MT system (data sheet)
  5. LEMI-423 - low cost magnetotelluric station -induction coil sensors
  6. LEMI-424 - low cost magnetotelluric station -fluxgate sensors
  7. KMS-870 MARINE broadband Seismic/EM deep water node
  8. KMS-888 shallow borehole system
  9. ..
  10. MR-ML™: mud logging NMR instrument, MR-ML.pdf

Transmitters:

  1. KMS-500 CSEM Transmitter (transition zone): KMS-500.pdf
  2. KMS-5100 Land transmitter (100/150/200 KVA) spare kit

Sensors:

  1. KMS-029 3 component fluxgate sensor to 180 Hz - 32 bit
  2. Land MT Magnetometer: KMS-LIC120.pdf (LEMI-120)
  3. Land AMT magnetometer LEMI-118: LEMI-118.pdf
  4. AMT/groundwater applications magnetometer (0.4 to 10 kHz) (LEMI 145)
  5. Marine Magnetometer: KMS-MIC121.pdf  (as LEMI-121
  6. Super Broad Band coil LEMI-152
  7. Multi-turn air loop S20, S30 etc.
  8. KMS-888 shallow borehole system

Customized geophysical systems- overview

  1. Wide-band Magnetotelluric (MT) system
  2. Array Data Acquisition System
  3. KMS-888 shallow borehole system
  4. NEW... KMS-820 MINI- low cost MT system (data sheet)
  5. KMS system overview (postcard)
  6. MT system family overview
  7. Lightening protection

System accessories (batteries, cables etc.)

  1. LOW WEIGHT Field batteries (Lithium Iron) KMS-410
  2. Cable specifications: KMS-100 KMS-105 KMS-110 KMS-115 KMS-186
  3. Metal cable reel KMS-155
  4. Long range wireless adapter: KMS-300
  5. KMS 820 Wifi-chip set and web access box
  6. Wifi-interface options
  7. MT spare kit for KMS 820
  8. Laptop / tablet controllers rugged laptop
  9. Transportation cases

Services & training

  1. MT-Easy(TM) hand on training course 2 weeks (data sheet)
  2. 3D MT and CSEM modeling and inversion services: description,  Cloud based inversion services
  3. Reservoir monitoring: developing a pilot study
  4. Training course: Reservoir Characterization with Borehole Geophysics..brochure
  5. Training course: Electrical Method for Hydrocarbon Exploration ..brochure
  6. Training course: Reservoir Monitoring with Electromagnetics/Microseismics ..brochure

Software

  1. CSEMulator - 3D CSEM modeling package for anisotropic models (surface/borehole)
  2. LotemSuite: 1-Dimensional Lotem (CSEM) Modeling:
  3. Spectral Plower: SPower.pdf  
  4. MT/EM processing software fro KMS-820 array system:KMS-200 KMS-200 news item, news item 2
  5. IX1D marine/land EM sounding inversion software
  6. EM QaQc data processing software: EM QaQc.pdf
  7. 3D MT/CSEM modeling/inversion: ModEM (Egbert)
  8. 3D EM modeling for land/marine/borehole MAXANIS
  9. 3D electrical log modeling  MAXANIS for logging

LEMI sensors

  1. LEMI sensors: LEMI sensors.pdf
  2. LEMI sensors: LEMI sensors marketing postcard.pdf
  3. Fluxgate magnetometer LEMI-011: LEMI-011.pdf
  4. Fluxgate magnetometer LEMI-017: LEMI-017.pdf
  5. Fluxgate magnetometer LEMI-018: LEMI-018.pdf
  6. Fluxgate magnetometer LEMI-019: LEMI-019.pdf
  7. Fluxgate magnetometer LEMI-020: LEMI-020.pdf
  8. Fluxgate magnetometer LEMI-022: LEMI-022.pdf
  9. Fluxgate magnetometer LEMI-024: LEMI-024.pdf
  10. Fluxgate magnetometer LEMI-025: LEMI-025.pdf
  11. Fluxgate magnetometer LEMI-026: LEMI-026.pdf FOR DRONES
  12. Fluxgate magnetometer LEMI-029: LEMI-029.pdf
  13. Magnetotelluric station LEMI-030: LEMI-030.pdf
  14. Fluxgate magnetometer LEMI-031:LEMI-031.pdf
  15. Fluxgate magnetometer LEMI-036:LEMI-036.pdf
  16. Fluxgate magnetometer LEMI-039D: LEMI-039D.pdf FOR MARINE APPLICATIONS
  17. Induction coil magnetometer LEMI-118: LEMI-118.pdf
  18. Induction coil magnetometer LEMI-120: LEMI-120.pdf
  19. Induction coil magnetometer LEMI-121: LEMI-121.pdf
  20. Induction coil magnetometer LEMI-123: LEMI-123.pdf
  21. Induction coil magnetometer LEMI-142: LEMI-142.pdf
  22. Induction coil magnetometer (0.4 to 10 kHz) (LEMI-145)
  23. 3C induction coil magnetomeer (1 - 500 kHz) (LEMI-150)FOR DRONES
  24. Super Broad Band induction coil magnetometer LEMI-152
  25. Autonomous vector magnetometer for sea floor application: LEMI-301.pdf
  26. Autonomous vector magnetometer for general application: LEMI-304.pdf
  27. Long-period magnetotelluric station LEMI-417: LEMI-417.pdf
  28. Wide-band magnetotelluric station LEMI-418: LEMI-418.pdf
  29. Long period telluric E station LEMI-420 (LEMI-420)
  30. Low Cost, Wide-band magnetotelluric station LEMI-23: LEMI-423.pdf NEW
  31. Low frequency, low cost MT station LEMI-424 LEMI-424
  32. Ultra-low noise non-polarizable electrodes: LEMI-701 safety data sheet

Publications where KMS instruments are used

General system design/Sensors/ Reservoir Monitoring: 

  1. Davydyscheva, S., I. Geldmacher, T. Hanstein, and K. Strack, 2017, CSEM revisited - Shales and Reservoir Monitoring, Expanded abstract, 79th EAGE Conference & Exhibition, Paris. (Presentation)
  2. Hanstein, T., Jonke, P., and K.M. Strack, 2015, New applications with KMS-820, Schmucker-Weidelt Kolloqium.
  3. Passalacqua, H., P. Boonyasaknanoon, , and K, Strack, 2016, Integrated Geophysical Monitoring for Heavy Oil, Heavy Oil Conference Kuwait, SPE-184089-MS (manuscript, presentation)
  4. Strack, K.M., and A.A. Aziz, 2012, Full Field Array ElectroMagnetics: Advanced EM from the surface to the borehole, exploration to reservoir monitoring, in Lane, R. (Editor), Natural Fields EM Forum 2012, Geoscience Australia Record 2012/04, 176-198.
  5. Daniel, Ch., 2014, Monitoring magnetic fields for advanced LIGO, Final SURF Presentation, LIGO document G1400911-v1 (https://dcc.ligo.org/LIGO-G1400911/public)
  6. Strack, K.M., 2015, Reservoir monitoring using electromagnetics/microseismics:
    Experience leading to a 200 channel system
    , Schmucker-Weidelt Kolloqium.
  7. Strack, K., S. Davydycheva, T, Hanstein, and M. Smirnov, 2017, A New Array System for Multiphysics (MT, LOTEM, and Microseismic) with Focus on Reservoir Monitoring, GeoEM 2017 conference Bandung Indonesia - invited keynote (Expanded abstract, presentation)
  8. Strack, K., Davydycheva, S., Passalacqua, H., Smirnov, M.Y., and  Xu, X., 2021,  Using Cloud-Based Array Electromagnetics on the Path to Zero Carbon Footprint during the Energy TransitionPreprints 2021, 2021080009 doi: 10.20944/preprints202108.0009.v1.
  9. Strack, K., Davydycheva, S., Hanstein, T., Paembonan, A.Y., and Smirnov, M., 2022, An array multi-physics acquisition system with focus on reservoir monitoring for the energy transition, Earth & Environmental Science Research & Reviews, 5,4, 237-268, doi: 10.33140/EESRR

CSEM applications:

  1. Strack, K.M., Martinez, Y. L., , Passalacqua, H., and Xiayu X., 2022, Cloud-Based Array Electromagnetics Contributing to Zero Carbon Footprint, Offshore Technology Conference, 2022. doi: 10.4043/31788-MS. 
  2. Ashadi, A.L., Martinez, Y., Kirmizakis, P., Hanstein, T., Xu, X., Khogali, A., Paembonan, A.Y.,AlShaibani, A., Al-Karnos, A., Smirnov, M., Strack, K., and Soupios, P., 2022, First High-Power CSEM Field Test in Saudi Arabia. Minerals, 12, 1236, doi: 10.3390/min12101236 
  3. Strack, K., Davydycheva, S., Hanstein, T., Paembonan, A.Y., and Smirnov, M., 2022, An array multi-physics acquisition system with focus on reservoir monitoring for the energy transition, Earth & Environmental Science Research & Reviews, 5,4, 237-268, doi: 10.33140/EESRR. 
  4. Moerbe, W., Yogeshwar, P., Tezkan, B., and Hanstein, T., 2020, Deep exploration using long-offset transient electromagnetics: Interpretation of field data in time and frequency domain, Geophysical Prospecting, 68, 6, 1980-1998, doi:10.1111/1365-2478.12957  
  5. Haroon, A., J. Adrian, R. Bergers, M. Gurk, B. Tezkan, A.L. Mammadow, and A.G. Novruzov, 2014, Joint inversion of long-offset and central-loop transient electromagnetic data: Application to a mud volcano exploration in Perekishkul, Azerbaijan, Geophysical Prospection, 62, 1-17.
  6. Haroon, A., K. Lippert, and B. Tezkan, 2015, Development of a marine differential electric dipole system, 26. Schmucker-Weidelt Kolloqium f. Elektromagnetische Tiefenforschung.
  7. Haroon, A., V. Mogalitov, M. Goldman, R. Bergers, B. Tezkan, 2016, Exploration of resistive targets within shallow environments using the circular electric dipole and differential electric dipole methods: A time domain modeling study, Geophysical Journal International, (in press).
  8. Kuepper, M., B. Tezkan, P. Yogeshwar, A. Haroon, R.Bergers, and T. Hanstein, 2015, In-loop Transient Elektromagnetische Messungen im Koelner Gruenguertel: Vergleich der KMS-820 Empfangseinheit mit dem Zonge GDP32-II, Schmucker-Weidelt Kolloqium.
  9. Paembonan, A.Y., R. Arjwech, S. Davydycheva, M. Smirnov, and K. Strack, 2017, An Application of LOTEM around Salt Dome near Houston, Texas, GeoEM 2017 conference Bandung Indonesia (Expanded abstract, presentation)
  10. Strack, K., and  Davydycheva, S., 2021, Using electromagnetics to map lateral fluid variations in carbonates in SE Asia, in Purenovic, J. (ed), New Approaches in Engineering Research, Vol. 2, Book Publisher International., DOI: 10.9734/bpi/naer/v2/8202D.
  11. Strack, K., Davydycheva, S., Passalacqua, H., Smirnov, M.Y., and  Xu, X., 2021,  Using Cloud-Based Array Electromagnetics on the Path to Zero Carbon Footprint during the Energy TransitionPreprints 2021, 2021080009 doi: 10.20944/preprints202108.0009.v1.
  12. Tacsi, M. T., and J.M. Zordan, 1999, Surface-measured resistivity may be key to successful stratigraphic trap exploration - A recent discovery using electromagnetic imaging. West Texas Geological Society publ. #98-105, (KMS-5100 transmitter)
  13. Tezkan, B., K. Lippert, R. Bergers, and M. Goldman, 2012, On the exploration of a marine aquifer offshore Israel by long offset transient electromagnetic: A 2D conductivity model, Extended abstract 21st EM induction workshop, Darwin.

Magnetotelluric applications:

  1. Amatyakul, P., T. Rung-Arunwan, and W. Siripunvaraporn, 2015, A pilot magnetotelluric survey for geothermal exploration in Mae Chan region, Northern Thailand, Geothermics, 55, 31-38.
  2. Amatyakul, P., S. Boonchaisuk, T. Rung-Arunwan, C. Vachiratienchai, S.H. Wood, K. Pirarai, A. Fuangswadi, and W. Siripunvaraporn, 2016, Exploring the shallow geothermal fluid reservoir of Fang geothermal system, Thailand via 3-D magnetotelluric survey, Geothermics, 64, 516-526. http://dx.doi.org/10.1016/j.geothermics.2016.08.003
  3. Strack, K., Davydycheva, S., Passalacqua, H., Smirnov, M.Y., and  Xu, X., 2021,  Using Cloud-Based Array Electromagnetics on the Path to Zero Carbon Footprint during the Energy TransitionPreprints 2021, 2021080009 doi: 10.20944/preprints202108.0009.v1.
  4. Ashadi, A.L., Martinez, Y., Kirmizakis, P., Hanstein, T., Xu, X., Khogali, A., Paembonan, A.Y.,AlShaibani, A., Al-Karnos, A., Smirnov, M., Strack, K., and Soupios, P., 2022, First High-Power CSEM Field Test in Saudi Arabia. Minerals, 12, 1236, doi: 10.3390/min12101236 
  5. Boonchaisuk, S., Noisagool, S., Amatyakul, Rung-Arunwan, T., Vachiratienchai, C., Siripunvaraporn, W., 2017, 3-D magnetotelluric imaging of the Phayao Fault Zone, Northern Thailand: Evidence for saline fluid in the source region of the 2014 Chiang Rai earthquake, Journal of Asian Earth Science, 147, 210-221, doi: 10.1016/j.jseaes.2017.07.034.
  6. Amatyakul, P., Wood, S.H., Rung-arunwan, T., Vachiratienchai, C., Prommakorn, N., Chanapiwat, Siripunvaraporn, W., 2021, An assessment of a shallow geothermal reservoir of Mae Chan hot spring, northern Thailand via magnetotelluric surveys, Geothermics, 95, doi: 10.1016/j.geothermics.2021.102137

Marine electromagnetics:

  1. Bhatt, K.M., A. Hoerdt, and T. Hanstein, 2009, Analysis of seafloor ,marine EM data with respect to motion-induced noise,23rd Schmucker-Weidelt Kolloqium.

Drone/mobile applications

  1. Prystai, A., V. Korepanov, F. Dudkin, and B. Danivskyy, 2016, Vector magnetometer application with moving carriers, Sensor & Transducers, 207, 44-49.

3D modeling/inversion related: MODE3D, CSEMulator, and MAXANIS

  1. Abubakar, A., T. M. Habashy, V. Druskin, L. Knizhnerman, S. Davydycheva, 2006, A 3D parametric inversion algorithm for triaxial induction data, Geophysics, Vol. 71, No.1 (January-February), G1-G9. http://library.seg.org/doi/pdf/10.1190/1.1845272
  2. Anderson, B., V. Druskin. P. Lee,  M. Luling, E. Schoen, J. Tabanou, P. Wu, L. Knizhnerman, and S. Davydycheva, 1997, Modeling of 3D effects on 2-Mhz LWD resistivity logs, SPWLA  38th Annual Logging Symposium Transactions, June 15-18, 1997, Paper N, 14 pages. https://www.onepetro.org/conference-paper/SPWLA-1997-N
  3. Anderson, B., T. Barber, V. Druskin. P. Lee, E. Dussan, L. Knizhnerman, and S. Davydycheva, The response of multi-array induction tools in highly dipping formations with invasion and in arbitrary 3D geometries, The Log Analyst,  40, No. 5 (1999) 327--344. http://www.spwla.org/publications/view/item/2292
  4. Barber, T.B., B. Anderson, A. Abubakar, T. Broussard, K-C. Chen, S. Davydycheva, V. Druskin, T. M. Habashy, D. M. Homan, G. Minerbo, R. Rosthal, R. Schlein, H. Wang, Determining Formation Resistivity Anisotropy in the Presence of Invasion, Proceedings of SPE Annual Technical Conference, Houston, 26-29 September 2004, Paper 90526. https://www.onepetro.org/conference-paper/SPE-90526-MS
  5. Davydycheva, S. and V. Druskin, Staggered grid for Maxwell's equations in arbitrary 3-D inhomogeneous anisotropic media, in: Oristaglio, M., and Spies, B., Eds., Three-dimensional electromagnetics: Soc. Expl. Geophys., 1999, 138-145. http://library.seg.org/doi/abs/10.1190/1.9781560802154.ch9
  6. Davydycheva, S., Druskin V., and Habashy T., 2003, An efficient finite-difference scheme for electromagnetic logging in 3D anisotropic inhomogeneous media, Geophysics, 68, 1525-1536. http://library.seg.org/doi/abs/10.1190/1.1620626
  7. Davydycheva, S., N. Rykhlinski, P. Legeido, 2006, Electrical prospecting method for oil search using the induced polarization effect. Geophysics, Vol. 71, No.4, G179-G189. http://library.seg.org/doi/pdf/10.1190/1.1845270
  8. Davydycheva, S., Homan, D.M., Minerbo, G., 2009, Triaxial Induction Tool with Electrode Sleeve: finite-difference modeling in 3D geometries, Journal of Applied Geophysics, 67(1), 98-108. http://www.sciencedirect.com/science/article/pii/S0926985108001328
  9. Davydycheva, S. and  Rykhlinski, N.I., 2009, Focused Source EM Survey versus time- and frequency-domain CSEM, The Leading Edge, 28, no. 8, 944-949.  http://library.seg.org/doi/abs/10.1190/1.3192841
  10. Davydycheva, S., 2010, Separation of azimuthal effects for new-generation resistivity logging tools – Part I, Geophysics, 75, no. 1, E31-E40. http://library.seg.org/doi/abs/10.1190/1.3269974
  11. Davydycheva, S., 2010, 3D modeling of new-generation [1999-2010] resistivity logging tools, The Leading Edge, 29, no. 7, 780-789. http://library.seg.org/doi/abs/10.1190/1.3462778
  12. Davydycheva, S., and  Rykhlinski, N.I., 2011, Focused–source electromagnetic survey versus standard CSEM: 3D modeling in complex geometries, Geophysics, 76, no. 1, F27-F41. http://library.seg.org/doi/abs/10.1190/1.3192841
  13. Davydycheva, S., 2011, Two triaxial induction tools: sensitivity to radial invasion profile, Geophysical Prospecting, 59, no. 2, 323-340. http://www.earthdoc.org/publication/publicationdetails/?publication=23757
  14. Davydycheva, S., 2011, Separation of azimuthal effects for new-generation resistivity logging tools – Part II,  Geophysics, 76, no.3, F185-F202. http://library.seg.org/doi/abs/10.1190/1.3560169
  15. Davydycheva, S., and Wang, T., 2011, A fast modeling method to solve Maxwell’s equations in 1D layered biaxial anisotropic medium, Geophysics, 76, no.5, F293-F302. http://library.seg.org/doi/abs/10.1190/geo2010-0280.1 
  16. Davydycheva, S., and Frenkel, M., 2013, The impact of 3D tilted resistivity anisotropy on marine CSEM measurements, The Leading Edge, 32, no. 11, 1374-1381. http://library.seg.org/doi/abs/10.1190/tle32111374.1
  17. Davydycheva, S., M. Zhou, R. Liu, 2014, Triaxial induction tool response in 1D layered biaxial anisotropic formation, SEG, 84th Annual Meeting, Denver.  http://library.seg.org/doi/abs/10.1190/segam2014-0784.1
  18. Davydycheva, S.,  Kaminsky, A., Rykhlinski, N., and Yakovlev, A., 2015, A large-scale field study in Eastern Siberia using novel time-domain electromagnetic technology, Interpretation, 3, No. 2 ,  T109-T120, http://library.seg.org/doi/pdf/10.1190/INT-2013-0165.1
  19. Davydycheva, S., and Kaminsky, A., 2016, Triaxial induction logging: new interpretation method for biaxial anisotropic formations – Part 1, Interpretation, 4, No. 2 (May) pp. SF151-SF164. http://library.seg.org/doi/ pdf/10.1190/INT-2015-0136.1
  20. Egbert, G.E., N. Maqbel, and A. Kelbert, 2017, Some results from ModEM3DMT, the freely available OSU 3D MT inversion code, 6th International Symp. on Three-Dimensional Electromagnetics, Berkeley, March 28-30.
  21. Frenkel, M. and Davydycheva, S.,  2009, A modeling study of low-frequency CSEM in shallow water, expanded abstract, 71 th EAGE Conference &Exhibition, Amsterdam. http://www.earthdoc.org/publication/publicationdetails/?publication=23686
  22. Frenkel, M., and Davydycheva, S., 2010, A Novel Technology for Fast Detecting and Imaging Subsurface Tunnels, SPIE paper 7669-7. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1343069
  23. Frenkel, M., and Davydycheva, S., 2012, To CSEM or not to CSEM? Feasibility of 3D marine CSEM for detecting small targets, The Leading Edge, 31, no. 4, 435-446. http://library.seg.org/doi/abs/10.1190/tle31040435.1
  24. Moskow, S.,  V. Druskin, T. Habashy, P. Lee, and S. Davydycheva, 1999, A finite difference scheme for elliptic equations with rough coefficients using a Cartesian grid nonconforming to interfaces.  SIAM J. Numer. Anal., 36, No. 2, 442-464. http://epubs.siam.org/doi/abs/10.1137/s0036142997318541
  25. Pour, R.A., Kennedy, D., Davydycheva, S., 2011, On the efficacy of tornado charts, SPWLA, paper WWW.  http://www.spwla.org/publications/view/item/3767
  26. Rosthal R., T. Barber, S. Bonner, K-C. Chen, S. Davydycheva, G. Hazen, D. Homan, C. Kibbe, G. Minerbo, R. Schlein, L. Villegas, H. Wang, and F. Zhou, 2003, Field test results of an experimental fully-triaxial induction tool: 44th SPWLA Annual Symposium, Galveston, Paper QQ. https://www.onepetro.org/conference-paper/SPWLA-2003-QQ
  27. Wang, H., T. Barber, K-C. Chen, S.Davydycheva, M.Frey, D. Homan, G. Minerbo, C. Morriss, R. Rosthal, J. Smits, G.  Tumbiolo, 2006, Triaxial Induction Logging -Theory, Modeling, Inversion and Interpretation, SPE paper 103897. https://www.onepetro.org/conference-paper/SPE-103897-MS
  28. Wang, H., Davydycheva, S., Zhou, J., Frey, M., Barber, T., Abubakar, A., Habashy, T., 2008, Sensitivity Study and Inversion of the Fully-Triaxial Induction Logging in Cross-bedded Anisotropic Formation. 78thSEG Annual Meeting. http://library.seg.org/doi/pdf/10.1190/1.3054806Zaslavsky, M.,
  29. Davydycheva, S., Druskin, V., Abubakar, A., Habashy, T., Knizhnerman, L., 2006, Finite-difference solution of the three-dimensional electromagnetic problem using divergence-free preconditioners, SEG paper, http://dx.doi.org/10.1190/1.2370372
  30. Zaslavsky, M., Druskin, V., Davydycheva, S., Knizhnerman, L., Abubakar, A., and Habashy, T., 2011,  Hybride finite-difference integral equation solver for 3D frequency domain anisotropic electromagnetic problems, Geophysics, 76, no. 2, F123-F137. http://library.seg.org/doi/abs/10.1190/1.3552595
  31. Strack, K., and  Davydycheva, S., 2021, Using electromagnetics to map lateral fluid variations in carbonates in SE Asia, in Purenovic, J. (ed), New Approaches in Engineering Research, Vol. 2, Book Publisher International., DOI: 10.9734/bpi/naer/v2/8202D.
  32. Strack, K., Davydycheva, S., Passalacqua, H., Smirnov, M.Y., and  Xu, X., 2021,  Using Cloud-Based Array Electromagnetics on the Path to Zero Carbon Footprint during the Energy TransitionPreprints 2021, 2021080009 doi: 10.20944/preprints202108.0009.v1.
  33.  Strack, K.M., Martinez, Y. L., , Passalacqua, H., and Xiayu X., 2022, Cloud-Based Array Electromagnetics Contributing to Zero Carbon Footprint, Offshore Technology Conference, 2022. doi: 10.4043/31788-MS.

 

Patents for reference

KMS Technologies provides usage licenses to buyers of our equipment/systems included in the purchase.

KMS-820 family: Jiang, J., Aziz, A.A., Liu, Y., and Strack. K.M., 2015, Geophysical acquisition system, US 9,057,801.

To see our entire patent list click HERE